Перевод: со всех языков на русский

с русского на все языки

поэтому он зависит от типа

  • 1 repeater

    1) повторитель, проф. репитер
    простое сетевое устройство для регенерации сигналов, поступающих по проводному, беспроводному или оптическому каналу; служит для соединения двух сегментов ЛВС (расширения, наращивания сети). Отличается от коннектора тем, что уменьшает помехи (line noise) и усиливает сигналы перед их передачей в следующий сегмент, благодаря чему увеличивается расстояние, на которое можно разнести сетевые станции, т. е. повторитель работает на физическом уровне эталонной модели OSI, поэтому он зависит от типа ЛВС, но полностью прозрачен для сетевых протоколов. Повторителями являются также активные концентраторы (см. active hub).
    Syn:

    Англо-русский толковый словарь терминов и сокращений по ВТ, Интернету и программированию. > repeater

  • 2 automate programmable à mémoire

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Франко-русский словарь нормативно-технической терминологии > automate programmable à mémoire

  • 3 speicherprogrammierbare Steuerung, f

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Немецко-русский словарь нормативно-технической терминологии > speicherprogrammierbare Steuerung, f

  • 4 plc

    1. связь по ЛЭП
    2. программируемый логический контроллер
    3. несущая в канале ВЧ-связи по ЛЭП
    4. маскирование потери пакета
    5. контроллер с программируемой логикой
    6. акционерная компания с ограниченной ответственностью

     

    акционерная компания с ограниченной ответственностью
    AG - аббревиатура для обозначения AKTIENGESELLSCHAFT (акционерное общество). Оно пишется после названия немецких, австрийских или швейцарских компаний и является эквивалентом английской аббревиатуры plc (public limited company-акционерная компания с ограниченной ответственностью). Сравни: GmbH.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

    DE

    • AG

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    маскирование потери пакета
    Метод сокрытия факта потери медиапакетов путем генерирования синтезируемых пакетов (МСЭ-T G.1050).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    несущая в канале ВЧ-связи по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

     

    связь по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > plc

  • 5 programmable logic controller

    1. программируемый логический контроллер
    2. контроллер с программируемой логикой

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable logic controller

  • 6 programmable controller

    1. программируемый логический контроллер
    2. программируемый контроллер

     

    программируемый контроллер

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable controller

  • 7 storage-programmable logic controller

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > storage-programmable logic controller

  • 8 courant de fuite

    1. ток утечки конденсатора
    2. ток утечки

     

    ток утечки
    Электрический ток, протекающий по нежелательным проводящим путям в нормальных условиях эксплуатации.
    [ ГОСТ Р МЭК 60050-195-2005]

    ток утечки
    Любые токи, включая емкостные токи, которые могут протекать между открытыми проводящими поверхностями прибора и землей или другими открытыми проводящими поверхностями прибора.
    [ГОСТ IЕС 60730-1-2011]

    ток утечки
    Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.
    [ ГОСТ Р 50807-95]

    ток утечки
    Электрический ток, протекающий в Землю, открытую и стороннюю проводящие части и защитный проводник при нормальных условиях.
    Активное сопротивление изоляции токоведущих частей электрооборудования не может быть бесконечно большим, а их ёмкость относительно Земли или соединённых с Землёй проводящих частей не может быть равна нулю. Поэтому с любой токоведущей части, находящейся под напряжением, в Землю, а также в проводящие части, электрически соединённые защитными проводниками с заземляющим устройством электроустановки здания и с заземлённой токоведущей частью источника питания, постоянно протекает небольшой электрический ток, который в нормативной и правовой документации называют током утечки. В нормальном режиме электроустановки здания из токоведущих частей функционирующего электрооборудования всегда имеется утечка электрического тока в Землю, открытые и сторонние проводящие части и защитные проводники.
    Путь, по которому протекает ток утечки, зависит от типа заземления системы. В электроустановках зданий, соответствующих типам заземления системы TT и IT, ток утечки электрооборудования класса I через неповреждённую основную изоляцию протекает из токоведущих частей в открытые проводящие части. Из открытых проводящих частей по защитным проводникам, главной заземляющей шине, заземляющим проводникам и заземлителю ток утечки протекает в локальную землю. Если электроустановка здания соответствует типам заземления системы TN, преобладающая часть тока утечки протекает не в локальную землю, а по защитным проводникам и по PEN-проводникам электроустановки здания и низковольтной распределительной электрической сети протекает до заземлённой токоведущей части источника питания.
    [ http://www.volt-m.ru/glossary/letter/%D2/view/84/]

    EN

    leakage current
    electric current in an unwanted conductive path other than a short circuit
    [IEV number 151-15-49]


    leakage current
    electric current in an unwanted conductive path under normal operating conditions
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    FR

    courant de fuite, m
    courant électrique qui s'écoule à travers un chemin électrique non désiré autre qu'un court-circuit
    [IEV number 151-15-49]


    courant de fuite, m
    courant électrique qui, dans des conditions normales de fonctionnement, s'écoule à travers un chemin électrique non désiré
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    Тематики

    EN

    DE

    FR

     

    ток утечки конденсатора
    Ток проводимости, проходящий через конденсатор при постоянном напряжении.
    [ ГОСТ 21415-75]

    Тематики

    EN

    DE

    FR

    60. Ток утечки конденсатора

    D. Reststrom

    E. Leakage current

    F. Courant de fuite

    Ток проводимости, проходящий через конденсатор при постоянном напряжении

    Источник: ГОСТ 21415-75: Конденсаторы. Термины и определения оригинал документа

    Франко-русский словарь нормативно-технической терминологии > courant de fuite

  • 9 Ableitstrom

    1. ток утечки

     

    ток утечки
    Электрический ток, протекающий по нежелательным проводящим путям в нормальных условиях эксплуатации.
    [ ГОСТ Р МЭК 60050-195-2005]

    ток утечки
    Любые токи, включая емкостные токи, которые могут протекать между открытыми проводящими поверхностями прибора и землей или другими открытыми проводящими поверхностями прибора.
    [ГОСТ IЕС 60730-1-2011]

    ток утечки
    Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.
    [ ГОСТ Р 50807-95]

    ток утечки
    Электрический ток, протекающий в Землю, открытую и стороннюю проводящие части и защитный проводник при нормальных условиях.
    Активное сопротивление изоляции токоведущих частей электрооборудования не может быть бесконечно большим, а их ёмкость относительно Земли или соединённых с Землёй проводящих частей не может быть равна нулю. Поэтому с любой токоведущей части, находящейся под напряжением, в Землю, а также в проводящие части, электрически соединённые защитными проводниками с заземляющим устройством электроустановки здания и с заземлённой токоведущей частью источника питания, постоянно протекает небольшой электрический ток, который в нормативной и правовой документации называют током утечки. В нормальном режиме электроустановки здания из токоведущих частей функционирующего электрооборудования всегда имеется утечка электрического тока в Землю, открытые и сторонние проводящие части и защитные проводники.
    Путь, по которому протекает ток утечки, зависит от типа заземления системы. В электроустановках зданий, соответствующих типам заземления системы TT и IT, ток утечки электрооборудования класса I через неповреждённую основную изоляцию протекает из токоведущих частей в открытые проводящие части. Из открытых проводящих частей по защитным проводникам, главной заземляющей шине, заземляющим проводникам и заземлителю ток утечки протекает в локальную землю. Если электроустановка здания соответствует типам заземления системы TN, преобладающая часть тока утечки протекает не в локальную землю, а по защитным проводникам и по PEN-проводникам электроустановки здания и низковольтной распределительной электрической сети протекает до заземлённой токоведущей части источника питания.
    [ http://www.volt-m.ru/glossary/letter/%D2/view/84/]

    EN

    leakage current
    electric current in an unwanted conductive path other than a short circuit
    [IEV number 151-15-49]


    leakage current
    electric current in an unwanted conductive path under normal operating conditions
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    FR

    courant de fuite, m
    courant électrique qui s'écoule à travers un chemin électrique non désiré autre qu'un court-circuit
    [IEV number 151-15-49]


    courant de fuite, m
    courant électrique qui, dans des conditions normales de fonctionnement, s'écoule à travers un chemin électrique non désiré
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Ableitstrom

  • 10 absolute sensitivity of flaw detector

    1. динамический диапазон дефектоскопа

     

    динамический диапазон дефектоскопа
    Отношение амплитуд максимально возможного к минимально возможному принимаемым акустическим сигналам. Динамический диапазон зависит от типа преобразователя, поэтому его значение определяют с одним из преобразователей, входящих в комплект дефектоскопа.
    Единица измерения
    дБ
    Примечание
    У современных эходефектоскопов эта величина обычно лежит в пределах 90-120 дБ.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    Англо-русский словарь нормативно-технической терминологии > absolute sensitivity of flaw detector

  • 11 threshold of acoustic sensitivity

    1. динамический диапазон дефектоскопа

     

    динамический диапазон дефектоскопа
    Отношение амплитуд максимально возможного к минимально возможному принимаемым акустическим сигналам. Динамический диапазон зависит от типа преобразователя, поэтому его значение определяют с одним из преобразователей, входящих в комплект дефектоскопа.
    Единица измерения
    дБ
    Примечание
    У современных эходефектоскопов эта величина обычно лежит в пределах 90-120 дБ.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    Тематики

    • виды (методы) и технология неразр. контроля

    EN

    Англо-русский словарь нормативно-технической терминологии > threshold of acoustic sensitivity

  • 12 leakage current

    1. ток утечки на выходе оптопары (оптоэлектронного коммутатора)
    2. ток утечки конденсатора
    3. ток утечки
    4. обратный ток (выпрямителя)

     

    обратный ток (выпрямителя)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    ток утечки
    Электрический ток, протекающий по нежелательным проводящим путям в нормальных условиях эксплуатации.
    [ ГОСТ Р МЭК 60050-195-2005]

    ток утечки
    Любые токи, включая емкостные токи, которые могут протекать между открытыми проводящими поверхностями прибора и землей или другими открытыми проводящими поверхностями прибора.
    [ГОСТ IЕС 60730-1-2011]

    ток утечки
    Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.
    [ ГОСТ Р 50807-95]

    ток утечки
    Электрический ток, протекающий в Землю, открытую и стороннюю проводящие части и защитный проводник при нормальных условиях.
    Активное сопротивление изоляции токоведущих частей электрооборудования не может быть бесконечно большим, а их ёмкость относительно Земли или соединённых с Землёй проводящих частей не может быть равна нулю. Поэтому с любой токоведущей части, находящейся под напряжением, в Землю, а также в проводящие части, электрически соединённые защитными проводниками с заземляющим устройством электроустановки здания и с заземлённой токоведущей частью источника питания, постоянно протекает небольшой электрический ток, который в нормативной и правовой документации называют током утечки. В нормальном режиме электроустановки здания из токоведущих частей функционирующего электрооборудования всегда имеется утечка электрического тока в Землю, открытые и сторонние проводящие части и защитные проводники.
    Путь, по которому протекает ток утечки, зависит от типа заземления системы. В электроустановках зданий, соответствующих типам заземления системы TT и IT, ток утечки электрооборудования класса I через неповреждённую основную изоляцию протекает из токоведущих частей в открытые проводящие части. Из открытых проводящих частей по защитным проводникам, главной заземляющей шине, заземляющим проводникам и заземлителю ток утечки протекает в локальную землю. Если электроустановка здания соответствует типам заземления системы TN, преобладающая часть тока утечки протекает не в локальную землю, а по защитным проводникам и по PEN-проводникам электроустановки здания и низковольтной распределительной электрической сети протекает до заземлённой токоведущей части источника питания.
    [ http://www.volt-m.ru/glossary/letter/%D2/view/84/]

    EN

    leakage current
    electric current in an unwanted conductive path other than a short circuit
    [IEV number 151-15-49]


    leakage current
    electric current in an unwanted conductive path under normal operating conditions
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    FR

    courant de fuite, m
    courant électrique qui s'écoule à travers un chemin électrique non désiré autre qu'un court-circuit
    [IEV number 151-15-49]


    courant de fuite, m
    courant électrique qui, dans des conditions normales de fonctionnement, s'écoule à travers un chemin électrique non désiré
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    Тематики

    EN

    DE

    FR

     

    ток утечки конденсатора
    Ток проводимости, проходящий через конденсатор при постоянном напряжении.
    [ ГОСТ 21415-75]

    Тематики

    EN

    DE

    FR

     

    ток утечки на выходе оптопары (оптоэлектронного коммутатора)
    ток утечки

    Iут.вых
    Is
    Значение тока, протекающего в выходной цепи оптопары (оптоэлектронного коммутатора) в заданном режиме в закрытом состоянии.
    [ ГОСТ 27299-87]

    Тематики

    Обобщающие термины

    • параметры оптопар, оптоэлектронных коммутаторов и оптоэлектронных переключателей

    Синонимы

    EN

    60. Ток утечки конденсатора

    D. Reststrom

    E. Leakage current

    F. Courant de fuite

    Ток проводимости, проходящий через конденсатор при постоянном напряжении

    Источник: ГОСТ 21415-75: Конденсаторы. Термины и определения оригинал документа

    45. Ток утечки на выходе оптопары (оптоэлектронного коммутатора)

    Ток утечки

    Leakage current

    Iут.вых

    Значение тока, протекающего в выходной цепи оптопары (оптоэлектронного коммутатора) в заданном режиме в закрытом состоянии

    Источник: ГОСТ 27299-87: Приборы полупроводниковые оптоэлектронные. Термины, определения и буквенные обозначения параметров оригинал документа

    Англо-русский словарь нормативно-технической терминологии > leakage current

  • 13 earth current (deprecated)

    1. ток утечки

     

    ток утечки
    Электрический ток, протекающий по нежелательным проводящим путям в нормальных условиях эксплуатации.
    [ ГОСТ Р МЭК 60050-195-2005]

    ток утечки
    Любые токи, включая емкостные токи, которые могут протекать между открытыми проводящими поверхностями прибора и землей или другими открытыми проводящими поверхностями прибора.
    [ГОСТ IЕС 60730-1-2011]

    ток утечки
    Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.
    [ ГОСТ Р 50807-95]

    ток утечки
    Электрический ток, протекающий в Землю, открытую и стороннюю проводящие части и защитный проводник при нормальных условиях.
    Активное сопротивление изоляции токоведущих частей электрооборудования не может быть бесконечно большим, а их ёмкость относительно Земли или соединённых с Землёй проводящих частей не может быть равна нулю. Поэтому с любой токоведущей части, находящейся под напряжением, в Землю, а также в проводящие части, электрически соединённые защитными проводниками с заземляющим устройством электроустановки здания и с заземлённой токоведущей частью источника питания, постоянно протекает небольшой электрический ток, который в нормативной и правовой документации называют током утечки. В нормальном режиме электроустановки здания из токоведущих частей функционирующего электрооборудования всегда имеется утечка электрического тока в Землю, открытые и сторонние проводящие части и защитные проводники.
    Путь, по которому протекает ток утечки, зависит от типа заземления системы. В электроустановках зданий, соответствующих типам заземления системы TT и IT, ток утечки электрооборудования класса I через неповреждённую основную изоляцию протекает из токоведущих частей в открытые проводящие части. Из открытых проводящих частей по защитным проводникам, главной заземляющей шине, заземляющим проводникам и заземлителю ток утечки протекает в локальную землю. Если электроустановка здания соответствует типам заземления системы TN, преобладающая часть тока утечки протекает не в локальную землю, а по защитным проводникам и по PEN-проводникам электроустановки здания и низковольтной распределительной электрической сети протекает до заземлённой токоведущей части источника питания.
    [ http://www.volt-m.ru/glossary/letter/%D2/view/84/]

    EN

    leakage current
    electric current in an unwanted conductive path other than a short circuit
    [IEV number 151-15-49]


    leakage current
    electric current in an unwanted conductive path under normal operating conditions
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    FR

    courant de fuite, m
    courant électrique qui s'écoule à travers un chemin électrique non désiré autre qu'un court-circuit
    [IEV number 151-15-49]


    courant de fuite, m
    courant électrique qui, dans des conditions normales de fonctionnement, s'écoule à travers un chemin électrique non désiré
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > earth current (deprecated)

  • 14 ground current (US)

    1. ток утечки

     

    ток утечки
    Электрический ток, протекающий по нежелательным проводящим путям в нормальных условиях эксплуатации.
    [ ГОСТ Р МЭК 60050-195-2005]

    ток утечки
    Любые токи, включая емкостные токи, которые могут протекать между открытыми проводящими поверхностями прибора и землей или другими открытыми проводящими поверхностями прибора.
    [ГОСТ IЕС 60730-1-2011]

    ток утечки
    Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.
    [ ГОСТ Р 50807-95]

    ток утечки
    Электрический ток, протекающий в Землю, открытую и стороннюю проводящие части и защитный проводник при нормальных условиях.
    Активное сопротивление изоляции токоведущих частей электрооборудования не может быть бесконечно большим, а их ёмкость относительно Земли или соединённых с Землёй проводящих частей не может быть равна нулю. Поэтому с любой токоведущей части, находящейся под напряжением, в Землю, а также в проводящие части, электрически соединённые защитными проводниками с заземляющим устройством электроустановки здания и с заземлённой токоведущей частью источника питания, постоянно протекает небольшой электрический ток, который в нормативной и правовой документации называют током утечки. В нормальном режиме электроустановки здания из токоведущих частей функционирующего электрооборудования всегда имеется утечка электрического тока в Землю, открытые и сторонние проводящие части и защитные проводники.
    Путь, по которому протекает ток утечки, зависит от типа заземления системы. В электроустановках зданий, соответствующих типам заземления системы TT и IT, ток утечки электрооборудования класса I через неповреждённую основную изоляцию протекает из токоведущих частей в открытые проводящие части. Из открытых проводящих частей по защитным проводникам, главной заземляющей шине, заземляющим проводникам и заземлителю ток утечки протекает в локальную землю. Если электроустановка здания соответствует типам заземления системы TN, преобладающая часть тока утечки протекает не в локальную землю, а по защитным проводникам и по PEN-проводникам электроустановки здания и низковольтной распределительной электрической сети протекает до заземлённой токоведущей части источника питания.
    [ http://www.volt-m.ru/glossary/letter/%D2/view/84/]

    EN

    leakage current
    electric current in an unwanted conductive path other than a short circuit
    [IEV number 151-15-49]


    leakage current
    electric current in an unwanted conductive path under normal operating conditions
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    FR

    courant de fuite, m
    courant électrique qui s'écoule à travers un chemin électrique non désiré autre qu'un court-circuit
    [IEV number 151-15-49]


    courant de fuite, m
    courant électrique qui, dans des conditions normales de fonctionnement, s'écoule à travers un chemin électrique non désiré
    Source: 151-03-35 MOD, 826-03-08 MOD
    [IEV number 195-05-15]

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > ground current (US)

  • 15 charger

    1. узел зарядки
    2. обойма
    3. засыпной аппарат
    4. зарядный выпрямитель
    5. зарядный агрегат
    6. зарядное устройство источника бесперебойного питания
    7. зарядное устройство (в электротехнике)
    8. зарядное устройство
    9. загрузочная машина
    10. завалочная машина

     

    завалочная машина
    Машина для загрузки шихты в сталеплав. печь. Различают з. м.: напольные (рельсовые и безрельсовые) и подвесные. Напольные рельсовые з. м. используются в мартен. цехах с крупными печами (> 150 т). Напольные безрельсовые з. м. предназначены для обслуж. мартен. печей малой емкости (5—20 т). Подвесные з. м. работают, как правило, в цехах с печами средней емкости (20—150 т). М. такого типа состоит из мостового крана с гл. и вспомогат. тележками.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    загрузочная машина
    Машина для загрузки заготовок в нагреват. или термич. печи.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    зарядное устройство

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    устройство зарядное (в электротехнике)
    Устройство для зарядки электрических аккумуляторов и батарей конденсаторов.
    [РД 01.120.00-КТН-228-06]


    Зарядные устройства аккумуляторов

    Емкость и время работы аккумуляторных батарей очень сильно зависят от типа и качества зарядных устройств, применяемых для их заряда, которые обеспечивают определенный метод заряда и выбор режима разряда. Выбор хорошего зарядного устройства для пользователя аккумуляторов часто является вопросом второстепенной важности, особенно при использовании аккумуляторов в бытовой электронной технике. Однако это очень существенный вопрос, и решать его нужно сразу, чтобы впоследствии не удивляться, почему так быстро приходится менять аккумуляторы или почему они не держат заряд. В большинстве случаев деньги, вложенные в покупку хорошего зарядного устройства, оправдывают себя в результате эффективной работы и длительного срока службы аккумуляторов.

    Построение схемы простейшего зарядного устройства зависит от принципов заряда, которых, в общем, два: ограничение тока заряда и ограничение напряжения заряда. Принцип заряда с ограничением тока заряда используется при заряде никель-кадмиевых и никель-металлгидридных аккумуляторов, а принцип с ограничением напряжения заряда - при заряде свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторов.

    Весьма быстрое развитие электроники, совершенствование её элементной базы привели к созданию специализированных микросхем зарядных устройств, способные автоматически обеспечить заряд аккумулятора по заданному алгоритму и предназначенные для заряда аккумуляторов любого типа. Кроме того, отдельные типы микросхем помимо заряда обеспечивают измерение емкости аккумулятора или аккумуляторной батареи и степени разряда.

    Современные микросхемы зарядных устройств способны очень четкое прекращать процесса заряда практически по всем возможным характеристикам заряда: по скорости повышения температуры ΔТ/Δt, по пиковому напряжению на аккумуляторной батарее, по кратковременному понижению напряжения ΔU/Δt, по максимальной температуре, по сигналу таймера. Отдельные микросхемы обеспечивают контроль температуры окружающей среды и в зависимости от этого корректируют режим заряда и разряда. Например, такая коррекция происходит пошагово при изменении температуры на каждые 10 °С в пределах от -35 до +85 °С. На практике любая из этих схем, взятая за основу, обрастает дополнительными элементами, добавляющими зарядному устройству новые возможности, улучшая его характеристики.

    Зарядные устройства аккумуляторов, обеспечивающие постоянный ток ( гальваностатический режим заряда)
    Большая часть зарядных устройств обеспечивает заряд только постоянным током и потому пригодны лишь для заряда щелочных герметичных аккумуляторов (никель-металлгидридных и никель-кадмиевых). Простейшие бытовые зарядные устройства, осуществляющие заряд постоянным током, применяются для заряда от 1 до 4 аккумуляторов. Они различаются в основном конструкцией, а не принципиальной электрической схемой. Чаще всего такие зарядные устройства питаются через трансформатор от сети 220В и обеспечивают выпрямленный ток с невысоким уровнем его стабилизации. Ток практически всегда не регулируется, а время заряда определяется самим пользователем.

    Универсальность бытовых зарядных устройств, как правило, означает возможность установки в них аккумуляторов разных габаритов и обеспечение постоянного тока порядка 0,1С, по отношению к емкости, которую производитель зарядного устройства считает типичной для аккумуляторов такого типоразмера. Поэтому следует быть внимательным при установке в них аккумуляторов и правильно определять время заряда. За последние 5-7 лет быстрый прогресс промышленности привел к выпуску щелочных аккумуляторов одинаковых габаритов, но отличающихся по емкости в 3 раза. Стремление использовать простые универсальные зарядные устройства для заряда аккумуляторов все большей емкости может привести к очень продолжительному и, главное, малоэффективному заряду токами существенно меньше стандартного значения. Главным достоинством таких зарядных устройств является их низкая цена.

    Более дорогие зарядные устройства обеспечивают несколько режимов: доразряд (если он необходим), заряд и режим подзаряда. Доразряд щелочных аккумуляторов (до 1 В/ак) производится с целью снятия остаточной емкости. Однако следует учитывать, что в таких зарядных устройствах аккумуляторы, устанавливаемые в пружинные контакты, могут быть соединены последовательно, а контроль разряда выполняется по предельному разрядному напряжению U=(n х 1,0)В, где n - количество аккумуляторов в цепочке. Но после длительной эксплуатации аккумуляторы могут очень сильно различаться по емкости, и контроль по среднему напряжению для всей цепочки может привести к переразряду или переполюсованию наиболее слабых и их порче.

    Прекращение заряда или переключение в режим подзаряда (малым током для компенсации саморазряда) производится в таких зарядных устройствах автоматически в соответствии с некоторыми из тех параметров контроля, которые описаны в другой статье. При использовании таких зарядных устройств следует помнить, что не рекомендуется часто и надолго оставлять аккумуляторы в режиме компенсационного подзаряда, так как это укорачивает срок их службы.

    Некоторые зарядные устройства конструктивно оформлены так, что обеспечивают заряд как 1-4 отдельных аккумуляторов, так и 9 В батареи типоразмера 6E22 (E-BLOCK). Некоторые зарядные устройства имеют индивидуальный контроль процесса заряда (детекция -ΔU) в каждом канале, что дает возможность заряжать одновременно аккумуляторы разных типоразмеров.

    Следует заметить, что в том случае, когда пользователь может позволить себе длительный заряд никель-кадмиевых или никель-металлгидридных аккумуляторов стандартным током 0,1 С в течение 16 ч, можно использовать простейшие зарядные устройства с контролем процесса по времени. При этом, если нет уверенности в полном исчерпании емкости, следует очередной заряд сократить по времени: лучше некоторый недозаряд аккумуляторов, чем значительный перезаряд, который может привести к их деградации и преждевременном выходе из строя. Но вообще большая часть современных цилиндрических аккумуляторов может перенести случайный довольно значительный перезаряд без повреждения и последствий, хотя емкость их при последующем разряде и не повысится.

    Если же нужно максимально сократить время переподготовки аккумуляторов после исчерпания емкости, следует использовать зарядные устройства для быстрого заряда, но с высоким уровнем контроля процесса. При выборе зарядного устройства с разными параметрами контроля процесса следует учитывать, что контроль его по абсолютной величине конечного напряжения ненадежен, а из двух наиболее часто рекомендуемых производителями аккумуляторов параметров (-ΔU и ΔT/Δt) первый реализован уже во многих современных зарядных устройствах, второй - для обычных зарядных устройств редок, прежде всего из-за того, что требует наличия термодатчика, а его устанавливают только в батареях, но возможна установка термодатчика в место контакта аккумулятора с зарядным устройством. Не следует увлекаться и чересчур быстрым зарядом аккумуляторов (некоторые компании предлагают заряд за 15-30 мин). При плохом аппаратурном обеспечении даже надежного способа контроля заряда, столь быстрый заряд значительно сократит срок службы аккумулятора.

    Зарядные устройства аккумуляторов, обеспечивающие режим постоянного напряжения ( потенциостатический режим заряда) и комбинированный заряд
    Зарядные устройства для свинцово-кислотных, литий-ионных и литий-полимерных аккумуляторных батарей должны осуществлять стабилизацию тока на первой стадии заряда и стабилизацию напряжения питания на второй. Кроме того, должен быть обеспечен контроль конца заряда, который в общем случае может выполняться либо по времени, либо по снижению тока до заданной минимальной величины.

    Зарядных устройств с такой стратегией заряда на рынке много меньше, чем зарядных устройств, реализующих режим постоянного тока (имеются ввиду зарядные устройства для непосредственного заряда аккумуляторов и батарей, а не блоки питания для сотовых телефонов, ноутбуков и т.п.).

    О зарядных устройствах никель-кадмиевых и никель-металлгидридных аккумуляторах
    Для никель-кадмиевых и никель-металлгидридных аккумуляторных батарей существует три типа зарядных устройств. К ним относятся:

    1. Зарядные устройства нормального (медленного) заряда
    2. Зарядные устройства быстрого заряда
    3. Зарядные устройства скоростного заряда

    1. Зарядные устройства нормального (медленного) заряда.

    Зарядные устройства этого типа, иногда называют ночными. Ток нормального заряда составляет 0,1С. Время заряда - 14...16 ч. При таком малом токе заряда трудно определить время окончания заряда. Поэтому обычно индикатор готовности батареи в зарядных устройствах для нормального заряда отсутствует. Они самые дешевые и предназначены только для зарядки никель-кадмиевых аккумуляторов. Для зарядки как никель-кадмиевых так и никель-металлгидридных аккумуляторов используются другие, более совершенные зарядные устройства. Если зарядный ток установлен правильно, полностью заряженная батарея становится чуть теплой на ощупь. В таком случае нет надобности немедленно отключать ее от зарядного устройства. В нем она может оставаться более чем на один день. Но все же ее отсоединение сразу после окончания заряда - лучший вариант. При применении таких зарядных устройствах проблемы возникают, если они используются для зарядки батарей малой емкости, в то время как рассчитаны для работы с более мощными батареями. В таком случае аккумуляторная батарея станет нагреваться уже по достижении 70% своей емкости. Поскольку возможность понизить ток заряда или прекратить его процесс вообще отсутствует, то во второй половине цикла заряда начнется процесс теплового разрушения аккумуляторов. Единственно возможный способ сохранить аккумуляторы, это отключить их, как только они станут горячими. В случае, если для зарядки мощной аккумуляторной батареи используется недостаточно мощное зарядное устройство, батарея в процессе заряда будет оставаться холодной и никогда не будет заряжена до конца. Тогда она потеряет часть своей емкости.

    2. Зарядные устройства быстрого заряда.
    Они позиционируются как зарядные устройства среднего класса как по скорости заряда, так и по цене. Заряд аккумуляторов в них происходит в течение 3...6 часов током около 0,ЗС. В качестве необходимого элемента эти зарядные устройства имеют схему контроля достижения аккумуляторами определенного напряжения в конце заряда и их отключения в этот момент. Такие зарядные устройства обеспечивают лучшее по сравнению с устройствами медленного заряда обслуживание аккумуляторов. В настоящее время они уступили свое место зарядным устройствам скоростного заряда.

    3. Зарядные устройства скоростного заряда.
    Такие зарядные устройства имеют несколько преимуществ перед зарядными устройствами других типов. Главное из них - меньшее время заряда. Хотя из-за большей мощности источника напряжения и необходимости использования специальных узлов контроля и управления такие зарядные устройства имеют наиболее высокие цены. Время заряда в зарядных устройствах такого типа зависит от тока заряда, степени разряда аккумуляторов, их емкости и типа. При токе заряда 1С разряженная никель-кадмиевая батарея заряжается в среднем менее чем за один час. Если же аккумуляторная батарея полностью заряжена, некоторые зарядные устройства переходят в режим подзарядки пониженным током заряда и с отключением по сигналу таймера.

    Современные устройства скоростного заряда обычно используются для зарядки как никель-кадмиевых, так и никель-металлгидридных аккумуляторных батарей. Поскольку этот процесс происходит при повышенном токе заряда и за ним необходим контроль, крайне важно, чтобы в конкретном зарядном устройстве заряжались только те аккумуляторы, которые рекомендованы для скоростного заряда производителем. Некоторые батареи маркируют электрически на заводах-изготовителях с той целью, чтобы зарядное устройство могло распознать их тип и основные электрические характеристики. После этого зарядное устройство автоматически установит величину тока и задаст алгоритм процесса заряда, соответствующие установленным в него аккумуляторам.

    Еще раз подчеркнем, что свинцово-кислотные и литий-ионные аккумуляторные батареи имеют алгоритмы заряда, не совместимые с алгоритмом заряда никель-кадмиевых и никель-металлгидридных аккумуляторов.

    [ http://www.powerinfo.ru/charge.php]

    Тематики

    EN

     

    зарядное устройство источника бесперебойного питания
    Часть ИБП, которая обеспечивает поддержание аккумуляторной батареи в заряженном состоянии. В современных ИБП зарядное устройство работает по сложному алгоритму, обеспечивающему максимальный срок эксплуатации аккумуляторной батареи ИБП, при условии рекомендованного диапазона температуры окружающей среды, и быстрый термокомпенсированный заряд.
    [ http://www.radistr.ru/misc/document423.phtml]

    EN

    battery charger
    Functional UPS module that converts the utility mains AC voltage to DC voltage for charging batteries, in order to restore the charge that was withdrawn during mains outage.
    Generally, system's Rectifier fulfills also the charging function.
    [ http://www.upsonnet.com/UPS-Glossary/]

    Тематики

    Синонимы

    EN

     

    зарядный агрегат

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    зарядный выпрямитель

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    засыпной аппарат
    Устр-во для загрузки в домен, печь шихтовых материалов и их распределения по окружности и радиусу печи, выполняющее одноврем. ф-ции газ. затвора при давлении газа под колошником печи до 0,25 МПа. Пропускная способность з. а. совр. домен, печей достигает 1000 т/час. В конце XX в. получили наиб. распространение з. а.: конусный, конусный с подвижными колошниковыми плитами, бесконусный с лотковым распределителем шихты. Осн. конструктивные решения конусного з. а., предлож. англ. инж. Парри (неподвижная воронка и подвижный конус) в 1850 г. и амер. инж. Мак-Ки (вращающийся распределитель с малым конусом) в 1906 г., сохранились в совр. з. а. этого типа и в конусных з. а. с подвижными колошниковыми плитами, выполняющими ф-ции распределителя шихты (рис. 1). Осн. конструктивные решения, определ. более широкие возможности управляемого распределения шихты и герметизации печи (система запирающих клапанов, центр, течка, вращающ. распределит, лоток) применяются в бесконусном з. а. (БЗА) фирмы «Paul Wurt» с 1970-х гг. В мире установлено более 150 БЗА ф. «Paul Wurt», из них около 100 устройств однотрактовые. В 1990-х гг. было создано (Гипромез, ВНИИметмаш и др.) и установлено на доменных печах несколько типов одно- и двухтрактовых отечеств. БЗА.
    Установка БЗА с автоматизир. средствами контроля и управления, широкими возможностями управления радиальным и окружным распределением шихты, высокой долговечностью и ремонтопригодностью на всех вновь строящихся и реконструируемых печах стала одним из перспективных направлений повышения эффективности домен. произ-ва.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    обойма
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    EN

    charger
    Another term for (cartridge) clip.
    [Департамент лингвистических услуг Оргкомитета «Сочи 2014». Глоссарий терминов]

    Тематики

    EN

     

    узел зарядки
    электризатор

    Техническое средство для нанесения электростатических зарядов на поверхность ЭФГ-фоторецептора.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > charger

  • 16 mur extérieur

    1. наружная стена

     

    стена наружная
    Стена, отделяющая внутреннее пространство здания или сооружения от внешней среды
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    В зависимости от типа нагрузок наружные стены делятся на:

    • несущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра, а также от других конструктивных элементов здания (перекрытий, кровли, оборудования, и т.д.);
    • самонесущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра;
    • ненесущие (в том числе навесные) стены - воспринимающие нагрузки только от собственного веса и ветра в пределах одного этажа и передающие их на внутренние стены и перекрытия здания (типичный пример - стены-заполнители при каркасном домостроении).

    Требования к различным типам стен существенно отличаются. В первых двух случаях очень важны прочностные характеристики, т.к. от них во многом зависит устойчивость всего здания. Поэтому материалы, используемые для их возведения, подлежат особому контролю.

    Конструктивная система представляет собой взаимосвязанную совокупность вертикальных (стены) и горизонтальных (перекрытия) несущих конструкций здания, которые совместно обеспечивают его прочность, жесткость и устойчивость.

    На сегодняшний день наиболее применяемыми конструктивными системами являются каркасная и стеновая (бескаркасная) системы. Следует отметить, что в современных условиях часто функциональные особенности здания и экономические предпосылки приводят к необходимости сочетания обеих конструктивных систем. Поэтому сегодня все большую актуальность приобретает устройство комбинированных систем.

    Для бескаркасной конструктивной системы (рис. 1) используют следующие стеновые материалы: деревянные брусья и бревна, керамические и силикатные кирпичи, различные блоки (бетонные, керамические, силикатные) и железобетонные несущие панели (панельное домостроение).

    До недавнего времени бескаркасная система являлась основной в массовом жилищном строительстве домов различной этажности. Но в условиях сегодняшнего рынка, когда сокращение материалоемкости стеновых конструкций при одновременном обеспечении необходимых показателей теплозащиты является одним из самых актуальных вопросов строительства, все большее распространение получает каркасная система возведения зданий.

    Каркасные конструкции обладают высокой несущей способностью, малым весом, что позволяет возводить здания разного назначения и различной этажности с применением в качестве ограждающих конструкций широкого спектра материалов: более легких, менее прочных, но в то же время обеспечивающих основные требования по теплозащите, звуко- и шумоизоляции, огнестойкости. Это могут быть штучные материалы или панели (металлические - типа < сэндвич>, либо навесные железобетонные).

    Наружные стены в каркасных зданиях не являются несущими. Поэтому прочностные характеристики стенового заполнения не так важны, как в зданиях бескаркасного типа.

    Наружные стены многоэтажных каркасных зданий посредством закладных деталей крепятся к несущим элементам каркаса или опираются на кромки дисков перекрытий. Крепление может осуществляться и посредством специальных кронштейнов, закрепляемых на каркасе.

    С точки зрения архитектурной планировки и назначения здания, наиболее перспективным является вариант каркаса со свободной планировкой - перекрытия на несущих колоннах. Здания такого типа позволяют отказаться от типовой планировки квартир, в то время как в зданиях с поперечными или продольными несущими стенами это сделать практически невозможно.

    Хорошо зарекомендовали себя каркасные дома и в сейсмически опасных районах.

    Для возведения каркаса используются металл, дерево, железобетон, причем железобетонный каркас (рис. 2) может быть как монолитный, так и сборный. На сегодняшний день наиболее часто используется жесткий монолитный каркас с заполнением эффективными стеновыми материалами.

    Все большее применение находят легкие каркасные металлоконструкции (рис. 3). Возведение здания осуществляется из отдельных конструктивных элементов на строительной площадке; либо из модулей, монтаж которых производится на стройплощадке.

    Данная технология имеет несколько основных достоинств. Во-первых, - это быстрое возведение сооружения (короткий срок строительства). Во-вторых, - возможность формирования больших пролетов. И наконец, - легкость конструкции, уменьшающая нагрузку на фундамент. Это позволяет, в частности, устраивать мансардные этажи без усиления фундамента.

    Особое место среди металлических каркасных систем занимают системы из термоэлементов (стальных профилей с перфорированными стенками, прерывающими < мостики холода>). Подобную систему (см. рис. 4) представляет на российском рынке фирма "RANNILA" (Финляндия).

    Наряду с железобетонными и металлическими каркасами давно и хорошо известны деревянные каркасные дома, в которых несущим элементом является деревянный каркас из цельной или клееной древесины. По сравнению с рублеными деревянные каркасные конструкции отличаются большей экономичностью (меньше расход древесины) и минимальной подверженностью усадке.

    Несколько особняком стоит еще один способ современного возведения стеновых конструкций - технология с применением несъемных опалубок. Специфика рассматриваемых систем заключается в том, что сами элементы несъемной опалубки не являются несущими. элементами конструкции. В процессе строительства сооружения, путем установки арматуры и заливки бетоном, создается жесткий железобетонный каркас, удовлетворяющий требованиям по прочности и устойчивости.

    [ http://www.know-house.ru/info_new.php?r=walls2&uid=14]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > mur extérieur

  • 17 Außenwand

    1. наружная стена

     

    стена наружная
    Стена, отделяющая внутреннее пространство здания или сооружения от внешней среды
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    В зависимости от типа нагрузок наружные стены делятся на:

    • несущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра, а также от других конструктивных элементов здания (перекрытий, кровли, оборудования, и т.д.);
    • самонесущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра;
    • ненесущие (в том числе навесные) стены - воспринимающие нагрузки только от собственного веса и ветра в пределах одного этажа и передающие их на внутренние стены и перекрытия здания (типичный пример - стены-заполнители при каркасном домостроении).

    Требования к различным типам стен существенно отличаются. В первых двух случаях очень важны прочностные характеристики, т.к. от них во многом зависит устойчивость всего здания. Поэтому материалы, используемые для их возведения, подлежат особому контролю.

    Конструктивная система представляет собой взаимосвязанную совокупность вертикальных (стены) и горизонтальных (перекрытия) несущих конструкций здания, которые совместно обеспечивают его прочность, жесткость и устойчивость.

    На сегодняшний день наиболее применяемыми конструктивными системами являются каркасная и стеновая (бескаркасная) системы. Следует отметить, что в современных условиях часто функциональные особенности здания и экономические предпосылки приводят к необходимости сочетания обеих конструктивных систем. Поэтому сегодня все большую актуальность приобретает устройство комбинированных систем.

    Для бескаркасной конструктивной системы (рис. 1) используют следующие стеновые материалы: деревянные брусья и бревна, керамические и силикатные кирпичи, различные блоки (бетонные, керамические, силикатные) и железобетонные несущие панели (панельное домостроение).

    До недавнего времени бескаркасная система являлась основной в массовом жилищном строительстве домов различной этажности. Но в условиях сегодняшнего рынка, когда сокращение материалоемкости стеновых конструкций при одновременном обеспечении необходимых показателей теплозащиты является одним из самых актуальных вопросов строительства, все большее распространение получает каркасная система возведения зданий.

    Каркасные конструкции обладают высокой несущей способностью, малым весом, что позволяет возводить здания разного назначения и различной этажности с применением в качестве ограждающих конструкций широкого спектра материалов: более легких, менее прочных, но в то же время обеспечивающих основные требования по теплозащите, звуко- и шумоизоляции, огнестойкости. Это могут быть штучные материалы или панели (металлические - типа < сэндвич>, либо навесные железобетонные).

    Наружные стены в каркасных зданиях не являются несущими. Поэтому прочностные характеристики стенового заполнения не так важны, как в зданиях бескаркасного типа.

    Наружные стены многоэтажных каркасных зданий посредством закладных деталей крепятся к несущим элементам каркаса или опираются на кромки дисков перекрытий. Крепление может осуществляться и посредством специальных кронштейнов, закрепляемых на каркасе.

    С точки зрения архитектурной планировки и назначения здания, наиболее перспективным является вариант каркаса со свободной планировкой - перекрытия на несущих колоннах. Здания такого типа позволяют отказаться от типовой планировки квартир, в то время как в зданиях с поперечными или продольными несущими стенами это сделать практически невозможно.

    Хорошо зарекомендовали себя каркасные дома и в сейсмически опасных районах.

    Для возведения каркаса используются металл, дерево, железобетон, причем железобетонный каркас (рис. 2) может быть как монолитный, так и сборный. На сегодняшний день наиболее часто используется жесткий монолитный каркас с заполнением эффективными стеновыми материалами.

    Все большее применение находят легкие каркасные металлоконструкции (рис. 3). Возведение здания осуществляется из отдельных конструктивных элементов на строительной площадке; либо из модулей, монтаж которых производится на стройплощадке.

    Данная технология имеет несколько основных достоинств. Во-первых, - это быстрое возведение сооружения (короткий срок строительства). Во-вторых, - возможность формирования больших пролетов. И наконец, - легкость конструкции, уменьшающая нагрузку на фундамент. Это позволяет, в частности, устраивать мансардные этажи без усиления фундамента.

    Особое место среди металлических каркасных систем занимают системы из термоэлементов (стальных профилей с перфорированными стенками, прерывающими < мостики холода>). Подобную систему (см. рис. 4) представляет на российском рынке фирма "RANNILA" (Финляндия).

    Наряду с железобетонными и металлическими каркасами давно и хорошо известны деревянные каркасные дома, в которых несущим элементом является деревянный каркас из цельной или клееной древесины. По сравнению с рублеными деревянные каркасные конструкции отличаются большей экономичностью (меньше расход древесины) и минимальной подверженностью усадке.

    Несколько особняком стоит еще один способ современного возведения стеновых конструкций - технология с применением несъемных опалубок. Специфика рассматриваемых систем заключается в том, что сами элементы несъемной опалубки не являются несущими. элементами конструкции. В процессе строительства сооружения, путем установки арматуры и заливки бетоном, создается жесткий железобетонный каркас, удовлетворяющий требованиям по прочности и устойчивости.

    [ http://www.know-house.ru/info_new.php?r=walls2&uid=14]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Außenwand

  • 18 outside wall

    1. наружная стена
    2. наружная боковая поверхность (коронки)

     

    стена наружная
    Стена, отделяющая внутреннее пространство здания или сооружения от внешней среды
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    В зависимости от типа нагрузок наружные стены делятся на:

    • несущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра, а также от других конструктивных элементов здания (перекрытий, кровли, оборудования, и т.д.);
    • самонесущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра;
    • ненесущие (в том числе навесные) стены - воспринимающие нагрузки только от собственного веса и ветра в пределах одного этажа и передающие их на внутренние стены и перекрытия здания (типичный пример - стены-заполнители при каркасном домостроении).

    Требования к различным типам стен существенно отличаются. В первых двух случаях очень важны прочностные характеристики, т.к. от них во многом зависит устойчивость всего здания. Поэтому материалы, используемые для их возведения, подлежат особому контролю.

    Конструктивная система представляет собой взаимосвязанную совокупность вертикальных (стены) и горизонтальных (перекрытия) несущих конструкций здания, которые совместно обеспечивают его прочность, жесткость и устойчивость.

    На сегодняшний день наиболее применяемыми конструктивными системами являются каркасная и стеновая (бескаркасная) системы. Следует отметить, что в современных условиях часто функциональные особенности здания и экономические предпосылки приводят к необходимости сочетания обеих конструктивных систем. Поэтому сегодня все большую актуальность приобретает устройство комбинированных систем.

    Для бескаркасной конструктивной системы (рис. 1) используют следующие стеновые материалы: деревянные брусья и бревна, керамические и силикатные кирпичи, различные блоки (бетонные, керамические, силикатные) и железобетонные несущие панели (панельное домостроение).

    До недавнего времени бескаркасная система являлась основной в массовом жилищном строительстве домов различной этажности. Но в условиях сегодняшнего рынка, когда сокращение материалоемкости стеновых конструкций при одновременном обеспечении необходимых показателей теплозащиты является одним из самых актуальных вопросов строительства, все большее распространение получает каркасная система возведения зданий.

    Каркасные конструкции обладают высокой несущей способностью, малым весом, что позволяет возводить здания разного назначения и различной этажности с применением в качестве ограждающих конструкций широкого спектра материалов: более легких, менее прочных, но в то же время обеспечивающих основные требования по теплозащите, звуко- и шумоизоляции, огнестойкости. Это могут быть штучные материалы или панели (металлические - типа < сэндвич>, либо навесные железобетонные).

    Наружные стены в каркасных зданиях не являются несущими. Поэтому прочностные характеристики стенового заполнения не так важны, как в зданиях бескаркасного типа.

    Наружные стены многоэтажных каркасных зданий посредством закладных деталей крепятся к несущим элементам каркаса или опираются на кромки дисков перекрытий. Крепление может осуществляться и посредством специальных кронштейнов, закрепляемых на каркасе.

    С точки зрения архитектурной планировки и назначения здания, наиболее перспективным является вариант каркаса со свободной планировкой - перекрытия на несущих колоннах. Здания такого типа позволяют отказаться от типовой планировки квартир, в то время как в зданиях с поперечными или продольными несущими стенами это сделать практически невозможно.

    Хорошо зарекомендовали себя каркасные дома и в сейсмически опасных районах.

    Для возведения каркаса используются металл, дерево, железобетон, причем железобетонный каркас (рис. 2) может быть как монолитный, так и сборный. На сегодняшний день наиболее часто используется жесткий монолитный каркас с заполнением эффективными стеновыми материалами.

    Все большее применение находят легкие каркасные металлоконструкции (рис. 3). Возведение здания осуществляется из отдельных конструктивных элементов на строительной площадке; либо из модулей, монтаж которых производится на стройплощадке.

    Данная технология имеет несколько основных достоинств. Во-первых, - это быстрое возведение сооружения (короткий срок строительства). Во-вторых, - возможность формирования больших пролетов. И наконец, - легкость конструкции, уменьшающая нагрузку на фундамент. Это позволяет, в частности, устраивать мансардные этажи без усиления фундамента.

    Особое место среди металлических каркасных систем занимают системы из термоэлементов (стальных профилей с перфорированными стенками, прерывающими < мостики холода>). Подобную систему (см. рис. 4) представляет на российском рынке фирма "RANNILA" (Финляндия).

    Наряду с железобетонными и металлическими каркасами давно и хорошо известны деревянные каркасные дома, в которых несущим элементом является деревянный каркас из цельной или клееной древесины. По сравнению с рублеными деревянные каркасные конструкции отличаются большей экономичностью (меньше расход древесины) и минимальной подверженностью усадке.

    Несколько особняком стоит еще один способ современного возведения стеновых конструкций - технология с применением несъемных опалубок. Специфика рассматриваемых систем заключается в том, что сами элементы несъемной опалубки не являются несущими. элементами конструкции. В процессе строительства сооружения, путем установки арматуры и заливки бетоном, создается жесткий железобетонный каркас, удовлетворяющий требованиям по прочности и устойчивости.

    [ http://www.know-house.ru/info_new.php?r=walls2&uid=14]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > outside wall

  • 19 external wall

    1. наружная стена

     

    стена наружная
    Стена, отделяющая внутреннее пространство здания или сооружения от внешней среды
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    В зависимости от типа нагрузок наружные стены делятся на:

    • несущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра, а также от других конструктивных элементов здания (перекрытий, кровли, оборудования, и т.д.);
    • самонесущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра;
    • ненесущие (в том числе навесные) стены - воспринимающие нагрузки только от собственного веса и ветра в пределах одного этажа и передающие их на внутренние стены и перекрытия здания (типичный пример - стены-заполнители при каркасном домостроении).

    Требования к различным типам стен существенно отличаются. В первых двух случаях очень важны прочностные характеристики, т.к. от них во многом зависит устойчивость всего здания. Поэтому материалы, используемые для их возведения, подлежат особому контролю.

    Конструктивная система представляет собой взаимосвязанную совокупность вертикальных (стены) и горизонтальных (перекрытия) несущих конструкций здания, которые совместно обеспечивают его прочность, жесткость и устойчивость.

    На сегодняшний день наиболее применяемыми конструктивными системами являются каркасная и стеновая (бескаркасная) системы. Следует отметить, что в современных условиях часто функциональные особенности здания и экономические предпосылки приводят к необходимости сочетания обеих конструктивных систем. Поэтому сегодня все большую актуальность приобретает устройство комбинированных систем.

    Для бескаркасной конструктивной системы (рис. 1) используют следующие стеновые материалы: деревянные брусья и бревна, керамические и силикатные кирпичи, различные блоки (бетонные, керамические, силикатные) и железобетонные несущие панели (панельное домостроение).

    До недавнего времени бескаркасная система являлась основной в массовом жилищном строительстве домов различной этажности. Но в условиях сегодняшнего рынка, когда сокращение материалоемкости стеновых конструкций при одновременном обеспечении необходимых показателей теплозащиты является одним из самых актуальных вопросов строительства, все большее распространение получает каркасная система возведения зданий.

    Каркасные конструкции обладают высокой несущей способностью, малым весом, что позволяет возводить здания разного назначения и различной этажности с применением в качестве ограждающих конструкций широкого спектра материалов: более легких, менее прочных, но в то же время обеспечивающих основные требования по теплозащите, звуко- и шумоизоляции, огнестойкости. Это могут быть штучные материалы или панели (металлические - типа < сэндвич>, либо навесные железобетонные).

    Наружные стены в каркасных зданиях не являются несущими. Поэтому прочностные характеристики стенового заполнения не так важны, как в зданиях бескаркасного типа.

    Наружные стены многоэтажных каркасных зданий посредством закладных деталей крепятся к несущим элементам каркаса или опираются на кромки дисков перекрытий. Крепление может осуществляться и посредством специальных кронштейнов, закрепляемых на каркасе.

    С точки зрения архитектурной планировки и назначения здания, наиболее перспективным является вариант каркаса со свободной планировкой - перекрытия на несущих колоннах. Здания такого типа позволяют отказаться от типовой планировки квартир, в то время как в зданиях с поперечными или продольными несущими стенами это сделать практически невозможно.

    Хорошо зарекомендовали себя каркасные дома и в сейсмически опасных районах.

    Для возведения каркаса используются металл, дерево, железобетон, причем железобетонный каркас (рис. 2) может быть как монолитный, так и сборный. На сегодняшний день наиболее часто используется жесткий монолитный каркас с заполнением эффективными стеновыми материалами.

    Все большее применение находят легкие каркасные металлоконструкции (рис. 3). Возведение здания осуществляется из отдельных конструктивных элементов на строительной площадке; либо из модулей, монтаж которых производится на стройплощадке.

    Данная технология имеет несколько основных достоинств. Во-первых, - это быстрое возведение сооружения (короткий срок строительства). Во-вторых, - возможность формирования больших пролетов. И наконец, - легкость конструкции, уменьшающая нагрузку на фундамент. Это позволяет, в частности, устраивать мансардные этажи без усиления фундамента.

    Особое место среди металлических каркасных систем занимают системы из термоэлементов (стальных профилей с перфорированными стенками, прерывающими < мостики холода>). Подобную систему (см. рис. 4) представляет на российском рынке фирма "RANNILA" (Финляндия).

    Наряду с железобетонными и металлическими каркасами давно и хорошо известны деревянные каркасные дома, в которых несущим элементом является деревянный каркас из цельной или клееной древесины. По сравнению с рублеными деревянные каркасные конструкции отличаются большей экономичностью (меньше расход древесины) и минимальной подверженностью усадке.

    Несколько особняком стоит еще один способ современного возведения стеновых конструкций - технология с применением несъемных опалубок. Специфика рассматриваемых систем заключается в том, что сами элементы несъемной опалубки не являются несущими. элементами конструкции. В процессе строительства сооружения, путем установки арматуры и заливки бетоном, создается жесткий железобетонный каркас, удовлетворяющий требованиям по прочности и устойчивости.

    [ http://www.know-house.ru/info_new.php?r=walls2&uid=14]

    Недопустимые, нерекомендуемые

    Тематики

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > external wall

  • 20 lead acid battery

    1. свинцово-кислотная аккумуляторная батарея

     

    свинцово-кислотная аккумуляторная батарея
    Аккумуляторная батарея, в которой электроды изготовлены главным образом из свинца, а электролит представляет собой раствор серной кислоты.
    [Инструкция по эксплуатации стационарных свинцово-кислотных аккумуляторных батарей в составе ЭПУ на объектах ВСС России. Москва 1998 г.]


    Свинцово-кислотные аккумуляторы для стационарного оборудования связи

    О. Чекстер, И. Джосан

    Источник: http://www.solarhome.ru/biblio/accu/chekster.htm

    При организации электропитания аппаратуры связи широкое применение находят аккумуляторные установки: их применяют для обеспечения бесперебойности и надлежащего качества электропитания оборудования связи, в том числе при перерывах внешнего электроснабжения, а также для обеспечения запуска и работы автоматики собственных электростанций и электроагрегатов. В подавляющем большинстве аккумуляторных установок используются стационарные свинцово-кислотные элементы и моноблоки.

    Свинцово-кислотные аккумуляторы: за и против

    Преимущественное применение свинцово-кислотных аккумуляторов объясняется целым рядом их достоинств.

    1. Во-первых, диапазон емкостей аккумуляторов находится в пределах от единиц ампер-часов до десятков килоампер-часов, что позволяет обеспечивать комплектацию батарей любого необходимого резерва.
    2. Во-вторых, соотношение между конечными зарядным и разрядным напряжениями при зарядах и разрядах свинцово-кислотных аккумуляторов имеет наименьшее значение из всех электрохимических систем источников тока, что позволяет обеспечивать низкий перепад напряжения на нагрузке во всех режимах работы электропитающей установки.
    3. В-третьих, свинцово-кислотные аккумуляторы отличаются низкой величиной саморазряда и возможностью сохранения заряда (емкости) при длительном подзаряде.
    4. В-четвертых, свинцово-кислотные аккумуляторы обладают сравнительно низким внутренним сопротивлением, что обуславливает достаточную стабильность напряжения питания при динамических изменениях сопротивления нагрузки.

    Вместе с тем свинцово-кислотным аккумуляторам присущи недостатки, ограничивающие сферу их применения и усложняющие организацию их эксплуатации.

    Из-за низкой удельной плотности запасаемой энергии свинцово-кислотные аккумуляторы имеют достаточно большие массогабаритные параметры. Однако для стационарного применения этот показатель не имеет главенствующего значения в отличие от применения аккумуляторов для питания мобильных устройств.

    Поскольку в установках свинцово-кислотных аккумуляторов происходит газообразование, для обеспечения взрывобезопасности должна быть налажена естественная или принудительная вентиляция - в зависимости от условий применения и типа аккумуляторов. По этой же причине аккумуляторные установки нельзя размещать в герметичных шкафах, отсеках и т.д.

    Разряженные свинцово-кислотные аккумуляторы требуют немедленного заряда. В противном случае переход мелкокристаллического сульфата свинца на поверхности электродов в крупнокристаллическую фазу может привести к безвозвратной потере емкости аккумуляторов. В связи с этим при длительном хранении такие аккумуляторы (кроме сухозаряженных) необходимо периодически дозаряжать.

    Типы аккумуляторов

    По исполнению

    Согласно классификации МЭК (стандарт МЭК 50 (486)-1991) свинцово-кислотные аккумуляторы выпускаются в открытом и закрытом исполнении.

    Открытые аккумуляторы - это аккумуляторы, имеющие крышку с отверстием, через которое могут удаляться газообразные продукты, заливаться электролит, производиться замер плотности электролита. Отверстия могут быть снабжены системой вентиляции.

    Закрытые аккумуляторы - это аккумуляторы, закрытые в обычных условиях работы, но снабженные устройствами, позволяющими выделяться газу, когда внутреннее давление превышает установленное значение. Дополнительная доливка воды в такие аккумуляторы невозможна. Эти аккумуляторы остаются закрытыми, имеют низкое газообразование при соблюдении условий эксплуатации, указанных изготовителем, и предназначены для работы в исходном герметизированном состоянии на протяжении всего срока службы. Их еще называют аккумуляторами с регулируемым клапаном, герметизированными или безуходными.

    В свинцово-кислотных аккумуляторах во всех режимах их работы, в том числе и при разомкнутой цепи нагрузки (холостой ход), происходит сульфатация поверхности электродов и газообразование с расходом на эти реакции воды, входящей в состав электролита. Это вынуждает при эксплуатации обычных открытых аккумуляторов производить периодический контроль уровня и плотности электролита, доливку дистиллированной воды с проведением уравнительных зарядов, что является довольно трудоемким процессом.

    В герметизированных аккумуляторах за счет применения материалов с пониженным содержанием примесей, иммобилизации электролита и других конструктивных особенностей интенсивность сульфатации и газообразования существенно снижена, что позволяет размещать такие аккумуляторы вместе с питаемым оборудованием.

    По конструкции электродов

    Область применения и особенности эксплуатации свинцово-кислотных аккумуляторов определяются их конструкцией. По типу конструкции положительных электродов (пластин) различают следующие типы аккумуляторов:

    • с электродами большой поверхности (по классификации немецкого стандарта DIN VDE 510 - GroE);
    • с панцирными (трубчатыми) положительными электродами (по классификации DIN - OPzS и OPzV);
    • с намазными и стержневыми положительными электродами (по классификации DIN - Ogi).

    Герметизированные аккумуляторы, как правило, имеют намазные положительные и отрицательные электроды (за исключением аккумуляторов OPzV).

    Критерии выбора

    При выборе типа стационарного свинцово-кислотного аккумулятора, наиболее пригодного для конкретной области применения, необходимо руководствоваться следующими критериями:

    • режим разряда и отдаваемая при этом емкость;
    • особенности размещения;
    • особенности эксплуатации;
    • срок службы;
    • стоимость.

    Режим разряда

    При выборе аккумуляторов для определенного режима разряда следует учитывать, что при коротких режимах разряда коэффициент отдачи аккумуляторов по емкости меньше единицы. При одинаковой емкости отдача элементов с электродами большой поверхности выше в два раза, чем для элементов с панцирными электродами, и в полтора раза - чем для элементов с намазными электродами.

    Стоимость

    Стоимость аккумулятора зависит от его типа: как правило, аккумуляторы с электродами большой поверхности дороже панцирных, а намазные - дешевле и тех и других. Герметизированные аккумуляторы стоят больше, чем открытые.

    Срок службы

    Самыми долговечными при соблюдении правил эксплуатации являются аккумуляторы с электродами большой поверхности, для которых срок службы составляет 20 и более лет. Второе место по сроку службы занимают аккумуляторы с панцирными электродами - примерно 16-18 лет. Срок службы аккумуляторов с намазными электродами достигает 10-12 лет. Примерно такие же сроки эксплуатации имеют герметизированные аккумуляторы.

    Однако ряд производителей выпускает герметизированные аккумуляторы и с меньшим сроком службы, но более дешевые. По классификации европейского объединения производителей аккумуляторов EUROBAT эти герметизированные аккумуляторы подразделяются на 4 класса по характеристикам и сроку службы:

    • более 12 лет;
    • 10-12 лет;
    • 6-9 лет;
    • 3-5 лет.

    Аккумуляторы с короткими сроками службы, как правило, дешевле остальных и предназначены в основном для использования в качестве резервных источников тока в установках бесперебойного питания переменным током (UPS) и на временных объектах связи.

    Следует учитывать, что указанные выше значения срока службы соответствуют средней температуре эксплуатации 20 °С. При увеличении температуры эксплуатации на каждые 10 °С за счет увеличения скорости электрохимических процессов в аккумуляторах их срок службы будет сокращаться в 2 раза.

    Размещение

    По величине занимаемой площади при эксплуатации преимущество имеют герметизированные аккумуляторы. За ними в порядке возрастания занимаемой площади следуют аккумуляторы открытых типов с намазными электродами, панцирными электродами и с электродами большой поверхности.

    Размещать герметизированные аккумуляторы при эксплуатации, как правило, допускается и в вертикальном, и в горизонтальном положении - это позволяет более экономно использовать площадь под размещение электрооборудования. При горизонтальном размещении герметизированных аккумуляторов, если нет других предписаний производителя, аккумуляторы устанавливаются таким образом, чтобы пакеты электродных пластин занимали вертикальное положение.

    Эксплуатация

    Минимальных трудовых затрат при эксплуатации требуют герметизированные аккумуляторы. Остальные типы аккумуляторов требуют больших трудозатрат обслуживающего персонала, особенно те устройства, у которых величина примеси сурьмы в положительных решетках превышает 3%.

    Качество сборки, а также укупорка соединения крышки с транспортировочной пробкой (для аккумуляторов открытых типов) или предохранительным клапаном (для герметизированных аккумуляторов) должны обеспечивать герметизацию аккумуляторов при избыточном или пониженном на 20 кПа (150 мм рт. ст.) атмосферном давлении и исключать попадание внутрь атмосферного кислорода и влаги, способных ускорять сульфатацию электродов и коррозию токосборов и борнов у сухозаряженных аккумуляторов при хранении, а также исключать выход изнутри кислоты и аэрозолей при их эксплуатации. Для герметизированных аккумуляторов, кроме того, качество укупорки должно обеспечивать нормальные условия рекомбинации кислорода и ограничивать выход газа при заданных изготовителем эксплуатационных режимах работы.

    Электрические характеристики

    Емкость

    Основным параметром, характеризующим качество аккумулятора при заданных массогабаритных показателях, является его электрическая емкость, определяемая по числу ампер-часов электричества, получаемого при разряде аккумулятора определенным током до заданного конечного напряжения.

    По классификации ГОСТ Р МЭК 896-1-95, номинальная емкость стационарного аккумулятора10) определяется по времени его разряда током десятичасового режима разряда до конечного напряжения 1,8 В/эл. при средней температуре электролита при разряде 20 °С. Если средняя температура электролита при разряде отличается от 20 °С, полученное значение фактической емкости (Сф) приводят к температуре 20 °С, используя формулу:

    С = Сф / [1 + z(t - 20)]

    где z - температурный коэффициент емкости, равный 0,006 °С-1 (для режимов разряда более часа) и 0,01 °С-1 (для режимов разряда, равных одному часу и менее); t - фактическое значение средней температуры электролита при разряде, °С.

    Емкость аккумуляторов при более коротких режимах разряда меньше номинальной и при температуре электролита (20 ± 5) °С для аккумуляторов с разными типами электродов должна быть не менее указанных в таблице значений (с учетом обеспечения приемлемых пределов изменения напряжения на аппаратуре связи).

    Как правило, при вводе в эксплуатацию аккумуляторов с малым сроком хранения на первом цикле разряда батарея должна отдавать не менее 95% емкости, указанной в таблице для 10-, 5-, 3- и 1-часового режимов разряда, а на 5-10-м цикле разряда (в зависимости от предписания изготовителя) -не менее 100% емкости, указанной в таблице для 10-, 5-, 3-, 1- и 0,5-часового режимов разряда.

    При выборе аккумуляторов следует обращать внимание на то, при каких условиях задается изготовителем значение номинальной емкости. Если значение емкости задается при более высокой температуре, то для сравнения данного типа аккумулятора с другими необходимо предварительно пересчитать емкость на температуру 20 °С. Если значение емкости задается при более низком конечном напряжении разряда, необходимо пересчитать емкость по данным разряда аккумуляторов постоянным током, приводимую в эксплуатационной документации или рекламных данных производителя для данного режима разряда, до конечного напряжения, указанного в таблице.

    Кроме того, при оценке аккумулятора следует учитывать исходное значение плотности электролита, при которой задается емкость: если исходная плотность повышена, то весьма вероятно, что срок службы аккумулятора сократится.

    Пригодность к буферной работе

    Другим параметром, характеризующим стационарные свинцово-кислотные аккумуляторы, является их пригодность к буферной работе. Это означает, что предварительно заряженная батарея, подключенная параллельно с нагрузкой к выпрямительным устройствам, должна сохранять свою емкость при указанном изготовителем напряжении подзаряда и заданной его нестабильности. Обычно напряжение подзаряда Uпз указывается для каждого типа аккумулятора и находится в пределах 2,18-2,27 В/эл. (при 20 °С). При эксплуатации с другими климатическими условиями следует учитывать температурный коэффициент изменения напряжения подзаряда.

    Нестабильность подзарядного напряжения для основных типов аккумуляторов не должна превышать 1%, что накладывает определенные требования на выбор выпрямительных устройств при проектировании электропитающих установок связи.

    При буферной работе для достижения приемлемого срока службы свинцово-кислотных аккумуляторов необходимо не превышать допустимый ток их заряда, который задается различными производителями в пределах 0,1-0,3 С10. При этом следует помнить, что ток заряда аккумуляторов с напряжением, превосходящим 2,4 В/эл., не должен превышать величину 0,05 С10.

    Разброс напряжения элементов

    Важным параметром, определяемым технологией изготовления аккумуляторов, является разброс напряжения отдельных элементов в составе батареи при заряде, подзаряде и разряде. Для открытых типов аккумуляторов этот параметр задается изготовителем, как правило, в пределах ± 2% от среднего значения. При коротких режимах разряда (1-часовом и менее) разброс напряжений не должен превышать +5%. Обычно для аккумуляторов с содержанием более 2% сурьмы в основе положительных электродов разброс напряжений отдельных элементов в батарее значительно ниже вышеуказанного и не приводит к осложнениям в процессе эксплуатации аккумуляторных установок.

    Для аккумуляторов с меньшим содержанием сурьмы в основе положительных электродов или с безсурьмянистыми сплавами указанный разброс напряжения элементов значительно больше и в первый год после ввода в действие может составлять +10% от среднего значения с последующим снижением в процессе эксплуатации.

    Отсутствие тенденции к снижению величины разброса напряжения в течение первого года после ввода в действие или увеличение разброса напряжения при последующей эксплуатации свидетельствует о дефектах устройства или о нарушении условий эксплуатации.

    Особенно опасно длительное превышение напряжения на отдельных элементах в составе батареи, превышающее 2,4 В/эл., поскольку это может привести к повышенному расходу воды в отдельных элементах при заряде или подзаряде батареи и к сокращению срока ее службы или повышению трудоемкости обслуживания (для аккумуляторов открытых типов это означает более частые доливки воды). Кроме того, значительный разброс напряжения элементов в батарее может привести к потере ее емкости вследствие чрезмерно глубокого разряда отдельных элементов при разряде батареи.

    Саморазряд

    Качество технологии изготовления аккумуляторов оценивается также и по такой характеристике, как саморазряд.

    Саморазряд (по определению ГОСТ Р МЭК 896-1-95 - сохранность заряда) определяется как процентная доля потери емкости бездействующим аккумулятором (при разомкнутой внешней цепи) при хранении в течение заданного промежутка времени при температуре 20 °С. Этот параметр определяет продолжительность хранения батареи в промежутках между очередными зарядами, а также величину подзарядного тока заряженной батареи.

    Величина саморазряда в значительной степени зависит от температуры электролита, поэтому для уменьшения подзарядного тока батареи в буферном режиме ее работы или для увеличения времени хранения батареи в бездействии целесообразно выбирать помещения с пониженной средней температурой.

    Обычно среднесуточный саморазряд открытых типов аккумуляторов при 90-суточном хранении при температуре 20 ° С не должен превышать 1% номинальной емкости, с ростом температуры на 10 °С это значение удваивается. Среднесуточный саморазряд герметизированных аккумуляторов при тех же условиях хранения, как правило, не должен превышать 0,1% номинальной емкости.

    Внутреннее сопротивление и ток короткого замыкания

    Для расчета цепей автоматики и защиты аккумуляторных батарей ГОСТ Р МЭК 896-1-95 регламентирует такие характеристики аккумуляторов как их внутреннее сопротивление и ток короткого замыкания. Эти параметры определяются расчетным путем по установившимся значениям напряжения при разряде батарей токами достаточно большой величины (обычно равными 4 С10 и 20 С10) и должны приводиться в технической документации производителя. По этим данным может быть рассчитан такой выходной динамический параметр электропитающей установки (ЭПУ), как нестабильность ее выходного напряжения при скачкообразных изменениях тока нагрузки, поскольку в буферных ЭПУ выходное сопротивление установки в основном определяется внутренним сопротивлением батареи.

    Примечание:

    "Бумажная" версия статьи содержит сводную таблицу характеристик аккумуляторов (стр. 126-128). Так как формат таблицы очень неудобен для размещения на сайте, здесь эта таблица не приводится.

    Об авторах: О.П. Чекстер, начальник лаборатории ФГУП ЛОНИИС; И.М. Джосан, ведущий инженер ФГУП ЛОНИИС

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > lead acid battery

См. также в других словарях:

  • Эскадренные миноносцы типа «Дели» — Эскадренные миноносцы типа «Дели» …   Википедия

  • Сказуемое при подлежащем типа брат с сестрой —      1. При подлежащем указанного типа, образованном сочетанием «именительный падеж плюс предлог с плюс творительный падеж», сказуемое может стоять как в форме множественного, так и в форме единственного числа.      Форма м н о ж е с т в е н н о… …   Справочник по правописанию и стилистике

  • Сказуемое при подлежащем типа брат с сестрой —      1. При подлежащем указанного типа, образованном сочетанием «именительный падеж плюс предлог с плюс творительный падеж», сказуемое может стоять как в форме множественного, так и в форме единственного числа.      Форма м н о ж е с т в е н н о… …   Справочник по правописанию и стилистике

  • Полупроводники —         широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ Полупроводники 106 104 ом 1 см 1) и хороших диэлектриков (См. Диэлектрики) (σ ≤ 10 10 10 12 ом… …   Большая советская энциклопедия

  • Твёрдое тело —         одно из четырёх агрегатных состояний вещества, отличающееся от др. агрегатных состояний (жидкости (См. Жидкость), Газов, плазмы (См. Плазма)) стабильностью формы и характером теплового движения атомов, совершающих малые колебания около… …   Большая советская энциклопедия

  • Мясо — (Meat) Определения мяса, состав и свойства мяса Определения мяса, состав и свойства мяса, кулинарная обработка мяса Содержание Содержание 1.Состав и свойства Автолиз мяса 2.История употребления мяса Мясоедение в антропогенезе Употребление мяса в… …   Энциклопедия инвестора

  • Нефть — (Oil) Нефть это горючая жидкость Добыча и переработка запасов нефти является основой экономики многих стран Содержание >>>>>>>>>>>>>>>>> …   Энциклопедия инвестора

  • ПНЕВМОНИЯ — ПНЕВМОНИЯ. Содержание: I. Крупозная пневмония Этиология.................... ей Эпидемиология.................. 615 . Пат. анатомия...... ............ 622 Патогенез.................... 628 Клиника . .................... 6S1 II. Бронхопневмония… …   Большая медицинская энциклопедия

  • Пенополистирол — Структура пенополистирола при большом увеличении Пенополистирол  лёгкий газонаполненный ма …   Википедия

  • Оптовые запасы — (Wholesale Inventories) Определение оптовых запасов, торговые и складские запасы Информация об определении оптовых запасов, торговые и складские запасы Содержание Содержание Виды запасов и их характеристики Торговые и складские запасы Принципы… …   Энциклопедия инвестора

  • World of Warcraft — Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»